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1. Let us assume, that the loading function of a hardening plastic mate- 
rial is determined entirely by the state of stress and strain of the material 

f @Jij, e*j P) = 0 (1.1) 

where u,, are the components of the state of stress, 
of plastic strain. 

e,? are the components 

Let us assume, that the given path of loading leads to a determineddeformed 
state independently of the orientation of the body with respect to some Car- 
tesian system of coordinates r, y, I . -Then the loading function (1.1) can 
depend only on the invariants of the state of stress and strain. The invari- 
ants of the state of stress and strain will be the invariants of the tensors 
oiJ, e,p and also the common Invariants of these tensors. 

It Is known (for example, Cl]), that the number of basic Invariants, 
through which all the Invariants of -the tensors oiJ and e,,p can be expres- 
sed (Including also the common ones) is equal to nine. This circumstance 
corresponds to the fact, that the given state of stress and strain is deter- 
mined entirely by six values of the principal components of the state of 
stress and strain and also by three Independent values, which characterize 
a common orientation of the principal directions of the tensors oil and 
e,! . 

In this way, one can write 

f (a*, eip, a,B,f)=O (i = 1,2,3) (1.2) 

where u and e;P are the principal components of the stress tensor and of 
the plasi,lc stkain tensor; a, B and Y are three values, for example the 
Eulerlan angles, characterizing a common orientation of the principal direc- 
tions of 0, and eiB . 

Any nine Independent lnvarlants can be chosen as basic, for example 

4Pfjs uij”ji* aij~jkc,v 8*jeijp9 eijpejf 
(1.3) 

eij pe pe p jk ki 9 aijeijPV aijejkPekiP, ‘ijajkekp 

where biJ are the components of the unit tensor. 
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fun%ion (1.2). 
Let us consider some slngularltles of the behavior of the loading 

For simplicity let us restrict ourselves to the shear case. 
Le," us assume, that the only components different from zero are TV,, rVz, e,", 
% Further on we will omit z and p Indices. 

The state of stress and strain In shear can be represented by the 

“9 5 

ILL 
r = r,i + r,j, e = e,i + evj 

c d 
r where i and j are the unit vectors. The 

ants of the state of stress and strain are 

0 

Fig. 1 

e > (F&.1). 
Instead of the 

vectors 

(2.1) 

lnvarl- 

(2.2) 

(2.3) 

It Is evident, 
as basic. Let u.3 

where Q Is the angle between the vectors T and 

angle (L it Is convenient to use one of the lnvarlants 

Se, + rVeV, I %‘zev - rues I (2.4) 

that any three of the invariants (2.2), (2.4) oan be used 
examine the loading function 

f CT,’ + fua, eza + eua, I Txeu - Tuex I) = 0 (2.5) 

According to (2.5) any initial yielding curve In the plane T,, 7, will 
be a circle. Indeed, e, = e, 
(2.5) has the form 

= 0 at the initial yielding moment condition 

f ('F,p + 'c$ 0, 0) = 0 (2.6) 

Let us assume that the loading T,# 0, T,= 0 takes place. If the load- 
ing function (2.5) remains symmetrical with respect to the T -axis, then 

%id?tioa~2~5j 
The dependence between T, and e, will be aetermlned from 

f kal ex a O)=O , (2.7) 
The loading function (2.5), which corresponds to the condition 7, # 0, 

e, # 0, To= e,= 0 has the form 

f bxa + rva, exs, I tyez I) = 0 (2.8) 
Let us assume, that the loading function (2.5) does not depend on the 

Invariant et + e,” , 
f (TX’ + TV”, I Txev - ‘tyex I) = 0 (2.9) 

Then during the loading T, # 0 , e,# 0 , T,=e, = 0 , Expression (2.9) will 
take the form /(rXa, 0) = 0 , and, therefore, during the Initial loading the 
materlaldoes not harden In the direction of loading. 

However the loading function will ch 
"& 

e during the change of the state 
of strain. Indeed, the loading function 2.9), which corresponds to the 
state of strain e,# 0 , c, =o , will have the form 

t V,8 + Tya, I tvex I) = 0 (2.10) 

As an example, let us examine the loading function 

TX2 -I- TV' = ka f ca (rse,, - z,,e,Ja (k, c = con&> 0) (2.11) 

Let us consider again a unlaxlal loading %#O* e~f"* '$ = ey = O* 
From (2.11) It follows, that 7,' k , therefore, the material does not harden 
along the direction of loading, and the loading function has the form 

rXa + T,,' (1 $ caeXa) = k* (2.12) 

Equation (2.12) In the plane T,, 
with the semlaxes 

T, will be an equation of an ellipse 

k and k/‘)/i~(ce.J. 7 The ellipses are shown In Fig. 2, 
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representing the loading curves (2.12), the Initial yielding curve is repre- 
sented by dashed fine. The ell 
to the upper sign In Bquatlons 

pse with t 
t 2.11) and 

e Increasing semiaxis corresponds 
2.12)* and the ellipse with the 

decreasing semiaxle corresponds to the lower sign in the same equations. 

In this way, the dependence of the load- 
ing function on the invariant Tz:zev - rve, 
oan lead to +nterestlng consequences: a mate- 
rial nonhardenlng In the direction of the 

Fig. 2 m. 3 

initial loading can harden or unbarden in other directions. An interesting 
case Is represented by the relation 

T,’ + ‘v” = ks + 2~ I Txey - Tvex I (2.13) 

In this case let us consider also the loading rxZ@ TV= 0, under which 
ex # 0, e,, = 0, takes place. The loading function will have the form 

t,’ + (xv J ce,)s = ks + &Je (2.14) 

The loading curve which corresponds to the loading function (2.14), is 
represented in Fig.3. Xn this case the material does not harden In the direc- 
tion of loading, and the loading function acquires an angular point. 

Let us assume, that the curve f(n,v,a) 
where o 1s a parameter. 

= 0 Is given In the plane X,U, 

It is easy to 
which for ~~30, 
given in advance; 

Indeed, let us ma.ke a correspondence between T,, TV * e, and x, 
Y’ 

a res- 
pectively. The sought loading function can be chosen, for example, n the 
form 

(2.15) 

or 

(2.16) 

&rtP loading fyype (2+g Tu = e ) and (2.16) lead to the same loading curve 
when the load is -0, but for the repeated loadings 
In other directlonr? their %eha&or wil$ be different. 

3.n the Sane way one can find other loading functions, which for uniaxial 
loading lead to the given loading curve. 

Let us make several observations: 

a) The consideration of repeated loadings in other directions Is connec- 
ted with a oompulsory use of the associated law of plastic flow. Depending 
on the choice of the loading function (2.5) different effects can be des- 
cribed : rotation of the loading curve, Bauschinger’s transversal effect, etc. 
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b) In the sameway, the plane problem can be considered for a noncompres- 
sible plastic material. In this case the state of stress and Strain condl- 
tlon can be represented by the vectors 

Q = V1 (a, - a,) i + z,j, e = Va (e, - ey) i + e,J 

The consideration of the state of stress and strain condition $3 related 
with the known difficulties of Interpretation. 

c) It is obvious, that the theory of translational hardening [2 and 33 
represents a particular case of the above considered relations; In this case 
the loading function will have the form 

(zx - ceJ2 + (TV - ce,Y 7 k* 
or 

(rx2 + r,Z) + (ex2 + eve) - 2c (txex + TV+ = k* (2.19) 
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