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1, Let us assume, that the loading function of a hardening plastic mate-
rial is determined entirely by the state of stress and strain of the materilal

f 0y e7) =0 (1.9)

where o,, are the components of the state of stress, e,p are the components
of plastic strain.

Let us assume, that the given path of loading leads to a determined deformed
state independently of the orientation of the body with respect to some Car-
tesian system of coordinates x, y, # . Then the loading function (1.1) can
depend only on the invariants of the state of stress and strain. The invari-
ants of the state of stress and strain will be the invariants of the tensors
0,3, e, and also the common invariants of these tensors.

It is known (for example, [1]), that the number of basic invariants,
through which all the invariants of:.the tensors ¢,, and e,,° can be expres-
sed (including also the common ones) is equal to nine. This circumstance
corresponds to the fact, that the gilven state of stress and stralin 1s deter-
mined entirely by six values of the principal components of the state of
stress and strain and also by three independent values, which characterize
a common orlentation of the principal directions of the tensors o,, and
e},

In this way, one can wrilte

f (o‘, e‘p, af,y)=0 (i=1,2,3) (1.2)

where g, and e are the principal components of the stress tensor and of
the plas%ic strain tensor; a, p and y are three values, for example the
Eulerian angles, characterizing a common orlentation of the principal direc-
tions of o, and e .

Any nine independent invariants can be chosen as basic, for example
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where &, are the components of the unit tensor.
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2. Let us consider some singularities of the behavior of the loading
function (1.2). For simplicity let us restrict ourselves to the shear case,

Let us assume, that the only components different from zero are Tyzr Ty € xg,
eu‘z’. Further on we will omit 2z and p 1ndices. v
The state of stress and strain in shear can be represented by the vectors
‘! 1"7 T = T i+ T, e=ed+ej 2.1)
T where 1 and J are the unit vectors., The invari-
¢ od ants of the state of stress and strain are
0 - =124 1k et =¢lf + ev‘ (2.2)
¢ T e, — T,e
oy @ = tan- TLL_;V_" 2.3)
Fig. 1 xéx T Tyey
where q 1s the angle between the vectors ¢ and
e , (Fig.1). ‘
Instead of the angle o 1t 1s convenient to use one of the invariants

Teee T Ve, | Tee, — e, (2.4)

It is evident, that any three of the invariants (2.2), (2.4) can be used
as basic, Let w3 examine the loading function

fes+ .‘yz’ e + eU’, | Tely — Tyey D=0 (2.5)

According to (2.5) any initial ylelding curve in the plane Tyy Ty Will
be a circle, Indeed, e, = ¢, = O at the initlal ylelding moment conditlon

(2.5) has the form f@E2+ 120,00 =0 (2.6)

Let us assume that the loading r,# O, r,= O takes place. If the load-
ing function {2.5) remains symmetrical with respect to the t_-axis, then
e, #0 , e,= 0 ., The dependence between 1, and ¢, will be determined from
condition (2.5)
f(x2e2 0 =0 (2.7)

The loading function (2.5), which corresponds to the condition «, # O,
e, #0, 1T,= e,= O has the form

fir2+ Tu” e | Tylx p=0 (2.8)

Let us assume, that the loading function (2.5) does not depend on the
invariant 2 + e

PR AN Tee, — Ty ) =0 (2.9

Then during the loading r,#0 , ¢, #0 , 1,=¢, = O , Expression (2.9) will
take the form #(r.2, 0) = O, and, therefore, during the initisl loading the
material does not harden in the direction of loading.

However the loading function will change during the change of the state
of strain., Indeed, the loading function {2.9), which corresponds to the
state of strain e, #0 , e, =0 , will have the form

reE2 vl Te ) =20 2.10)
As an example, let us examine the loading function
T+ T = Rk B (T, — Tye,)? (k, ¢ = const > 0) 2.14)

Let us consider again a unlaxial loading TxF 0, €, F 0, ¥, =¢, =0,
From (2.11) it follows, that «+,= k , therefore, the material does not harden
along the direction of loading, and the loading function has the form

Pt U F ey =i (2.12)

Equation (2.12) in the plane «r,, 7, will be an equation of an ellipse
with the semlaxes x and k/ Vm’- The ellipses are shown in Fig. 2,
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representing the loading curves (2.12), the initial ylelding curve is repre-
sented by dashed line. The ellipse with the increasing semiaxis corresponds
to the upper sign in Equations (2,11) and (2.12), and the ellipse with the
decreasing semlaxis corresponds to the lower sign in the same equations.

In this way, the dependence of the load-
ing function 6n the invariant Te€y — Tyer
can lead to interesting consequences: a mate-
rial nonhardening in the direction of the

4%?

Fig. 2 Fig. 3

initial loading can harden or unharden in other directions. An interesting
case 1s represented by the relation

T+ -v:u3 = k% -} 2¢ | Tl — Tyl l (2.13)

In this case let us consider alsc the loading T 0. T, =0, under which
e, 50, ey = 0, takes place. The loading function will have the form

T2+ (v, o)t = B+ (ee)® (2.14)

The loading curve which corresponds to the loading function {2.14), is
represented in Fig.3. In this case the material does not harden in the direc-
tion of loading, and the loading function acquires an angular point.

Let us assume, that the curve p(x,y,a) = O 1s given in the plane x,y,
where g 1s a parameter,

It 1s easy to consﬁfuct a loadling function, represented by a loading curve
which for T,=0, €, 0, T,=e, =0 "will coincide with the curve s{x,y,8)=0
given in advance; such tgat Pbr a

Indeed, let us make a correspondence between r,, 7,, e, 8nd x, y, @ res-
pectively. The sought loading function can be chosen, for example, 1n the
form

= O the curve p{x,y,0} = 0 I3 a circle,

Txex+rvell Itxellwryex 8.l a3} —
(V exa+ey’ » Vex2+eyz ’ Vexﬁ“i-eu”) —0 (2.15)
or
{T.e,— T8, S,
(VT g  VEFT) =0 10
x v !

Both loading func&ons (2 %?) and (2.16) lead to the same loading curve
when the load is T, =%0, ex% y Ty == &, = 0, but for the repeated loadings
in other directions their behavior wifi be different.

In the same way one can find other loading functions, which for unlaxial
loading lead to the glven loading curve,

Let us make several observatlons:

a) The consideration of repeated loadings in other directions is connec-
ted with a compulsory use of the assoclated law of plastic flow., Depending
on the choice of the loading function (2.5) different effects can be des-
cribed: rotation of the loading curve, Bauschinger's transversal effect, etc.
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b) In the same way, the plane problem can be considered for a noncompres-
sible plastic material, In thils case the state of stress and strain condi-
tion can be represented by the vectors

s =1/, (crx — Gv) i+ "xij e =1/, (e, — eu) i+ exuj (2.17)
The consideration of the state of stress and strain condition is related
with the known difficulties of interpretation,

c) It is obvious, that the theory of translational hardening [2 and 3]
represents a particular case of the above considered relations; 1in this case
the loading functlon will have the form

(T, — &) + (‘ru — ceu)’ = k? (2.18)
or
(v,2+ 1)+ (e, + ¢ — 2¢ (t.e, + ‘rveu) = k2 (2.19)
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